2 Auto Encoder
An encoder is a neural network that compresses high-dimensional input data into a lower-dimensional latent representation.
2.1 Architecture
- Encoder: Maps input \(x \in \mathbb{R}^D\) to latent code \(z \in \mathbb{R}^d\) (compression).
- Decoder: Reconstructs \(\hat{x}\) from \(z\) (reconstruction).
\[ \mathcal{L}_{\text{AE}} = \text{Reconstruction\_term} = \|x - \text{Decoder}(\text{Encoder}(x))\|^2 \]
Pytorch implementation: logic/model/autoencoder.py
2.2 Applications
- Feature extraction for clustering/visualization.
- Denoising (e.g., noisy Fashion-MNIST reconstruction).
2.3 Limitations
- Deterministic: No probabilistic latent space.
- No control over latent structure (e.g., disentanglement).