
Report - Variational Sparse Coding

Table of contents

1 Introduction 4
1.1 Datasets . 4
1.2 Report Structure . 5

2 Auto Encoder 6
2.1 Architecture . 6
2.2 Applications . 6
2.3 Limitations . 6

3 Variational Auto Encoder 7
3.0.1 VAE’s latent space . 7
3.0.2 Evidence Lower Bound (ELBO) . 7
3.0.3 𝛽-VAE . 8

4 Variational Sparse Coding 9
4.1 Motivation . 9
4.2 Recognition Model . 10
4.3 Training Procedure . 11

4.3.1 Prior Distribution & Objective . 11
4.3.2 Warm-Up Strategy . 12

5 Experiments 13
5.1 Latent Space . 13

5.1.1 Visualization . 13
5.1.2 Interpretation . 17

5.2 Activated Dimensions . 18
5.2.1 Visualization . 18
5.2.2 Interpretation . 21

5.3 Reconstruction . 22
5.3.1 Visualization . 22
5.3.2 Interpretation . 25

6 Conclusion 26

2

7 Conclusion 27
7.1 Key Contributions of VSC . 27

7.1.1 Sparse Latent Representations . 27
7.1.2 Dynamic Prior Adaptation . 27
7.1.3 Warm-Up Strategy . 27
7.1.4 Sparsity Control . 27

7.2 Limitations . 28
7.2.1 Discrete vs. Continuous Sparsity . 28
7.2.2 Reconstruction quality . 28
7.2.3 Parameter sensitivity . 28

7.3 Code Implementation . 28

3

1 Introduction

Unsupervised learning in high-dimensional data poses significant challenges, particularly in
discovering interpretable features and enabling controllable generation.

Variational Autoencoders (VAEs) provide a probabilistic framework for mapping complex data
to lower-dimensional latent spaces, but they often fail to disentangle underlying factors of
variation, especially when the number of true sources is unknown or when observations exhibit
diverse attribute combinations.

The “Variational Sparse Coding” (VSC) paper by Francesco Tonolini et al. proposes a novel
extension of VAEs, incorporating sparsity in the latent space via a Spike and Slab prior to
address these issues.

This report for a statistical course explores the VSC model, detailing its theoretical foundations,
implementation, and empirical validation.

1.1 Datasets

⊠ MNIST :

– A dataset of 28×28 grayscale images of handwritten digits (0–9), consisting of 60,000
training samples and 10,000 test samples. It is widely used as a benchmark for image
classification and serves as a foundational dataset for testing generative models and
neural network architectures.

⊠ Fashion-MNIST:

– A collection of 28x28 grayscale images of clothing items (e.g., T-shirts, trousers),
comprising 60,000 training and 10,000 test samples. It serves as a drop-in replace-
ment for MNIST, offering richer variability for testing generative models.

□ Smiley (Used in the original paper) :

– A dataset of 28×28 grayscale images depicting simple smiley faces with varying
expressions. Designed as a toy dataset, it is useful for evaluating generative and
classification models on abstract, low-complexity visual data.

□ UCI HAR (Used in the original paper):

4

https://proceedings.mlr.press/v115/tonolini20a.html

– A dataset of accelerometer and gyroscope signals from smartphones, capturing six
human activities (e.g., walking, sitting) across 30 subjects, with preprocessed seg-
ments of 128 time steps.

1.2 Report Structure

• Autoencoders: Introduces the basics of autoencoders and their role in high-dimensional
data analysis.

• Variational Autoencoders: Explains VAEs, focusing on the Evidence Lower Bound
(ELBO) and latent space regularization.

• Variational Sparse Coding: Details the VSC model, including the Spike and Slab
prior and warm-up training strategy.

• Experiments: Summarizes empirical results, comparing VSC to �-VAEs across multiple
tasks.

• Conclusion: Highlights VSC’s contributions and future directions.

5

2 Auto Encoder

An encoder is a neural network that compresses high-dimensional input data into a lower-
dimensional latent representation.

2.1 Architecture

1. Encoder: Maps input 𝑥 ∈ ℝ𝐷 to latent code 𝑧 ∈ ℝ𝑑 (compression).
2. Decoder: Reconstructs ̂𝑥 from 𝑧 (reconstruction).

ℒAE = Reconstruction_term = ‖𝑥 − Decoder(Encoder(𝑥))‖2

Pytorch implementation: logic/model/autoencoder.py

2.2 Applications

• Feature extraction for clustering/visualization.
• Denoising (e.g., noisy Fashion-MNIST reconstruction).

2.3 Limitations

• Deterministic: No probabilistic latent space.
• No control over latent structure (e.g., disentanglement).

6

3 Variational Auto Encoder

Variational Autoencoders (VAEs) extend autoencoders into a probabilistic framework, en-
abling both representation learning and generative modeling.

Unlike traditional autoencoders, VAEs model the latent variables 𝑧 as drawn from a distribu-
tion, typically a Gaussian, parameterized by the encoder.

3.0.1 VAE’s latent space

• The encoder outputs parameters 𝜇 and 𝜎2

– 𝑞𝜙(𝑧|𝑥) = 𝒩(𝑧; 𝜇, 𝜎2).
• The decoder generates 𝑝𝜃(𝑥|𝑧).
• The latent space prior is typically a standard Gaussian,

– 𝑝(𝑧) = 𝒩(0, 𝐼), which constrains the latent space to remain centered around the
origin, promoting meaningful structure for visualization and generative tasks.

• The goal is to maximize the marginal likelihood 𝑝(𝑥), but this is intractable due to the
integral:

𝑝(𝑥) = ∫ 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)𝑑𝑧

3.0.2 Evidence Lower Bound (ELBO)

VAEs approximate the marginal likelihood 𝑝(𝑥) using the Evidence Lower Bound (ELBO):

ℒELBO = 𝔼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝐷KL(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))

• Reconstruction Term: 𝔼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)]
– encourages accurate data reconstruction.

• KL Divergence Term: 𝐷KL(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))
– regularizes the latent distribution to match the prior.

7

The ELBO is optimized with respect to encoder parameters 𝜙 and decoder parameters 𝜃 using
the reparameterization trick for gradient computation.

def reparameterize(self, mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std

3.0.3 𝛽-VAE

The �-VAE introduces a hyperparameter 𝛽 to control the weight of the KL divergence term in
the ELBO:

ℒ𝛽-VAE = 𝔼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝛽𝐷KL(𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧))

• When 𝛽 = 0, the 𝛽-VAE reduces to a simple autoencoder model.
• When 𝛽 = 1, the 𝛽-VAE reduces to the standard VAE.
• Increasing 𝛽 encourages disentanglement in the latent space, making it more interpretable

but potentially at the cost of reconstruction quality.

The 𝛽-VAE is particularly useful in scenarios where interpretability of the latent space is crit-
ical, such as in disentangled representation learning. However, careful tuning of 𝛽 is required
to balance reconstruction and disentanglement. Also, 𝛽-VAE often work under the asumption
that all the target features are present in all the data points.

8

4 Variational Sparse Coding

4.1 Motivation

We would want a model that has an interpretable latent space (by introducing sparcity) with
more general feature disentenglement that 𝛽-VAE, meaning that different combinations of
features can be present in different data points.

What is Posterior Collapse?

• Problem: In VAEs, some latent dimensions become “useless” – they encode no
meaningful information.

• Why it happens:

– The KL divergence term in ELBO forces latent variables to match the prior.
– If the decoder is too powerful, it ignores latent variables, leading to dimensions

being permanently inactive.

– Result: Model uses only a few dimensions, losing sparsity and disentanglement.

How VSC Fixes It:

1. Spike-and-Slab Warm-Up

• Phase 1 (𝜆 = 0):
– Forces latent variables to behave like binary codes (spike dominates).

– Model must “choose” which dimensions to activate (no continuous refinement).

• Phase 2 (𝜆 → 1):
– Gradually introduces continuous slab parameters (𝜇𝑖,𝑗, 𝜎𝑖,𝑗).

– Prevents early over-reliance on a few dimensions.

2. Sparsity Enforcement

9

• KL Sparsity Term: Penalizes average activation rate ̄𝛾𝑢 if it deviates from 𝛼
(e.g., 𝛼 = 0.01).

• Forces the model to use only essential dimensions, avoiding redundancy.

3. Dynamic Prior

• Prior 𝑝𝑠(𝑧) adapts via pseudo-inputs 𝑥𝑢 and classifier 𝐶𝜔(𝑥𝑖).

• Prevents trivial alignment with a fixed prior (e.g., 𝒩(0, 1)).

Result:

• Latent dimensions stay sparse and interpretable.

• No single dimension dominates; features are distributed across active variables. Varia-
tional Sparse Coding (VSC) extends VAEs by inducing sparsity in the latent space using
a Spike-and-Slab prior, enabling feature disentanglement and controlled generation
when the number of latent factors is unknown.

4.2 Recognition Model

Spike-and-Slab Encoder Distribution

𝑞𝜙(𝑧|𝑥𝑖) =
𝐽

∏
𝑗=1

[𝛾𝑖,𝑗𝒩(𝑧𝑖,𝑗; 𝜇𝑖,𝑗, 𝜎2
𝑖,𝑗) + (1 − 𝛾𝑖,𝑗)𝛿(𝑧𝑖,𝑗)]

Parameters: All outputs of a neural network (encoder).

• 𝛾𝑖,𝑗: Probability that latent dimension 𝑗 is active for input 𝑥𝑖.

• 𝜇𝑖,𝑗, 𝜎𝑖,𝑗: Mean and variance of the Gaussian (slab) for active dimensions.

• 𝛿(𝑧𝑖,𝑗): Dirac delta function (spike) forces inactive dimensions to exactly 0.

Pytorch implementation of the reparameterization logic/model/vsc.py:

def reparameterize(self,
mu: torch.Tensor,
logvar: torch.Tensor,
gamma: torch.Tensor
) -> torch.Tensor:

10

lamb = self.lambda_val # warm-up factor
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)

Interpolate between a fixed (zero-mean, unit variance) slab
and the learned slab.
slab = lam * mu + eps * (lam * std + (1 - lam))

Sample binary spike; note: torch.bernoulli is not differentiable.
spike = torch.bernoulli(gamma)

return spike * slab

4.3 Training Procedure

4.3.1 Prior Distribution & Objective

Prior

𝑝𝑠(𝑧) = 𝑞𝜙(𝑧|𝑥𝑢∗), 𝑢∗ = 𝐶𝜔(𝑥𝑖)

• Pseudo-inputs: Learnable templates {𝑥𝑢} represent common feature combinations.

• Classifier: 𝐶𝜔(𝑥𝑖) selects the best-matching template 𝑥𝑢∗ for input 𝑥𝑖.

Objective (ELBO with Sparsity)

ℒ = ∑
𝑖

[−KL(𝑞𝜙‖𝑝𝑠) + 𝔼𝑞𝜙
[log 𝑝𝜃(𝑥𝑖|𝑧)]] − 𝐽 ⋅ KL(̄𝛾𝑢‖𝛼)

• KL Term:

– Aligns encoder (𝜇𝑖,𝑗, 𝜎𝑖,𝑗, 𝛾𝑖,𝑗) with prior (𝜇𝑢∗,𝑗, 𝜎𝑢∗,𝑗, 𝛾𝑢∗,𝑗).

– Closed-form formula ensures fast computation.

• Sparsity Term:

– Penalizes deviation from target sparsity 𝛼 (e.g., 90% dimensions inactive).

Pytorch implementation in logic/model/vsc.py:

11

def compute_sparsity_loss(self, gamma: torch.Tensor) -> torch.Tensor:
target = torch.full_like(gamma, self.prior_sparsity)
return nn.functional.binary_cross_entropy(gamma, target)

4.3.2 Warm-Up Strategy

𝑞𝜙,𝜆(𝑧|𝑥𝑖) =
𝐽

∏
𝑗=1

[𝛾𝑖,𝑗𝒩(𝑧𝑖,𝑗; 𝜆𝜇𝑖,𝑗, 𝜆𝜎2
𝑖,𝑗 + (1 − 𝜆)) + (1 − 𝛾𝑖,𝑗)𝛿(𝑧𝑖,𝑗)]

• Phase 1 (𝜆 = 0):

– Slab fixed to 𝒩(0, 1) (binary-like latent codes).

– Focus: Which features to activate.

• Phase 2 (𝜆 → 1):

– Gradually learn 𝜇𝑖,𝑗, 𝜎𝑖,𝑗 (refine how to represent features).

• Avoids collapse: Prevents premature “freezing” of latent dimensions.

12

5 Experiments

In this section, we validate the theoretical insights through practical experiments.

We implemented and trained from scratch four models on the MNIST dataset:

• AutoEncoder (AE)
• Variational AutoEncoder (VAE)

• Variational Sparse Coding (VSC)

• Variational Sparse Coding with Warm-Up (VSC-WU)

All models share the same encoder/decoder structure: three convolutional layers with ReLU
activations, ensuring a fair comparison by keeping the number of parameters approximately
equal. Each model was trained using the Adam optimizer over 25 epochs.

5.1 Latent Space

5.1.1 Visualization

To qualitatively evaluate the structure of the latent space, we sample from a 2D grid of latent
vectors and each point is decoded to an image

This provides insight into how the model organizes information in the latent space.

13

14

15

16

5.1.2 Interpretation

AE: Exhibits minimal structure, with random digit distribution and no discernible cluster-
ing.

VAE: Better organized and gradual transitions between digits.

VSC: Should reveal discrete clusters for each digit class but we don’t see distinct boundaries
like expected with the sparse coding framework.

17

VSC-WU: Should show improved transition smoothness between clusters.

5.2 Activated Dimensions

5.2.1 Visualization

We visualize how each latent dimension is activated across the dataset categories. For each
class (0 to 9), we compute the mean latent vector and display it as a heatmap.

This helps us identify how interpretable and sparse the representations are.

18

19

20

5.2.2 Interpretation

AE: Shows dense activations across all dimensions, indicating non-selective feature encoding.

VAE: More balanced but still overlapping activations. No clear sparsity pattern.

VSC: Demonstrates clear sparsity. The two dimensions remain near zero, and not the same
are selectively active depending on digits. This aligns with the spike-and-slab prior’s goal of
feature disentanglement. More latent dimensions could help demonstrate posterior collapse.
Note: During our experiments, we didn’t find the authors’ tuning that prevented collapse with
spike values � 1.0

VSC-WU: Same as for VSC but with lower and more homogeonous values. More latent
dimensions could help demonstrate that the warp-up strategy helps to avoid posterior collapse
but it is not obvious here.

21

5.3 Reconstruction

5.3.1 Visualization

Finally, we evaluate reconstruction quality by comparing recontructions of original and noisy
images.

This assesses both reconstruction quality and robustness to perturbations.

22

23

24

5.3.2 Interpretation

AE: Generates sharp reconstructions but fails to denoise effectively.

VAE: Produces more robust reconstructions with partial noise suppression.

VSC: Low quality reconstructions.

VSC-WU: Low quality reconstructions.

25

6 Conclusion

26

7 Conclusion

This report explored Variational Sparse Coding (VSC), an extension of Variational Au-
toencoders that introduces sparsity in the latent space via a Spike-and-Slab prior. Through
theoretical analysis and empirical validation on MNIST, we demonstrated how VSC addresses
key limitations of traditional VAEs and �-VAEs, particularly in achieving interpretable and
controllable latent representations.

7.1 Key Contributions of VSC

7.1.1 Sparse Latent Representations

The Spike-and-Slab prior enforces sparsity by allowing latent dimensions to be exactly zero
with high probability, unlike Gaussian priors in standard VAEs. This leads to disentangled
features.

7.1.2 Dynamic Prior Adaptation

The prior is learned via pseudo-inputs and a classifier, avoiding the rigid assumptions of a
fixed Gaussian prior. This enables the model to adapt to varying feature combinations
across data points, a limitation of �-VAEs.

7.1.3 Warm-Up Strategy

The two-phase training (binary-like and continuous refinement) prevents posterior col-
lapse, ensuring latent dimensions remain active and interpretable.

7.1.4 Sparsity Control

The KL sparsity term explicitly penalizes deviations from a target sparsity level, promoting
efficient use of latent capacity.

27

7.2 Limitations

7.2.1 Discrete vs. Continuous Sparsity

The Spike-and-Slab prior assumes hard sparsity (exact zeros). For some tasks, soft sparsity
(e.g., Laplace prior) may be more appropriate.

7.2.2 Reconstruction quality

VSC trades off some reconstruction fidelity for interpretability. Sparse priors can lead
to blurrier outputs.

7.2.3 Parameter sensitivity

The warm-up schedule and coefficients as well as the sparsity target require careful
tuning. The model remains unstable when adjusting the spike parameter (collapse for values
� 1.0), suggesting implementation-specific tuning is required.

7.3 Code Implementation

You can access our code implementations of Variational Sparse Coding (VSC) and other
related models here.

28

https://github.com/Ophiase/VSC-For-Sparse-VAE

	Introduction
	Datasets
	Report Structure

	Auto Encoder
	Architecture
	Applications
	Limitations

	Variational Auto Encoder
	VAE's latent space
	Evidence Lower Bound (ELBO)
	\beta-VAE

	Variational Sparse Coding
	Motivation
	Recognition Model
	Training Procedure
	Prior Distribution & Objective
	Warm-Up Strategy

	Experiments
	Latent Space
	Visualization
	Interpretation

	Activated Dimensions
	Visualization
	Interpretation

	Reconstruction
	Visualization
	Interpretation

	Conclusion
	Conclusion
	Key Contributions of VSC
	Sparse Latent Representations
	Dynamic Prior Adaptation
	Warm-Up Strategy
	Sparsity Control

	Limitations
	Discrete vs. Continuous Sparsity
	Reconstruction quality
	Parameter sensitivity

	Code Implementation

